Sub Total
Excluding delivery and voucher code discounts.
Go to basket

Free Delivery on all orders to UK mainland within 3 working days.

HP TECH TAKES /...

Exploring today's technology for tomorrow's possibilities
The Future of High-Performance Computing

The Future of High-Performance Computing

Tulie Finley-Moise
|
The technological advances that pervade and enrich our daily lives continue to surprise and excite us year after year. From artificial intelligence sitting on our countertop (we’re looking at you, Alexa), to our touch screen controlled Tesla sedans, high-powered technology is proving that the future is now.
Also known as parallel computing and supercomputing, high-performance computing (HPC) aggregates data processing power to deliver efficient, reliable, and rapid results. In other words, high-performance computing takes problem-solving to the next level.
For example, a standard 3 GHz processor is capable of performing 3 billion calculations per second, while a high-performance computer can perform quadrillions of calculations per second.
Although this high-powered machinery may not be a necessity for everyday PC users, HPCs are the crucial game-changing tech that engineers, scientists, and mathematicians will carve the future with.
So what exactly is high-performance computing? Why is it important and what does the future of high-performance computing look like? Let’s dive in and find out.

What is high-performance computing?

High-performance computing is a form of digital computation that allows users to tackle and solve complex problems at a faster rate than standard PCs allow. Where a general-purpose PC may struggle to bring a large-scale simulation to life, a supercomputer delivers instant calculations accompanied by stunning visuals within moments. Engineered for top-of-the-line performance and mind-blowing speed, HPCs have become society’s answer for sophisticated computation.

Then and now in HPC

Dating back to the 1960s, high-performance computers were originally introduced to the market by Seymour Cray at Control Data Corporation. With each passing year, these supercomputers grew stronger and faster with the addition of extra core processors and increased parallelism. Since their inception, high-performance computers have come an incredibly long way. Modern HPCs are equipped with tens of thousands of processors, capable of massive parallel computing that standard laptops and desktops can’t compare to.
Take what you know about a modern computer setup, and replace it with a number of grouped racks stacked up with thousands of processor cores. IBM’s “Summit” [1] is the world’s fastest supercomputer. Stationed at Oak Ridge National Laboratory, this $200,000,000 HPC is comprised of 256 racks and takes up 5,600 square feet of floor space within the Tennessee-based lab. With 185 miles of cable wiring and the electricity consumption to power 8,000 homes, Summit displays the monumental progress HPCs manufacturers have made since the first supercomputer.
Back in 1964 when the CDC 6600 was the one and only leader in supercomputing, it was humbly equipped with a single processor capable of completing 3 million calculations per second. While this may sound impressive, the modern smartphone is tens of thousands of times faster. Even leading into the 1990s, high-performance computers dished out slower processing speeds than an iPhone X. Today, Summit houses 36,000 processors capable of completing 200 quadrillion calculations per second.

How are high-performance computers constructed?

The perplexing construction of a high-performance computer can be broken down simply. All supercomputers contain the many elements you associate with your general-use PC; processors, memory, and disk storage. HPCs simply have many more of each.
Supercomputers are constructed by the connection of multiprocessor computer nodes to a common memory. These many processors are linked together by a high-speed interconnection network, also called a switch.
Most supercomputers utilize operating system software stemming from UNIX. Every supercomputer is different in design and configuration, but all HPCs follow this general construction formula.
With leadership-class computational performance as the priority, modern supercomputers like the Summit boast hybrid configurations that combine features from shared memory machines and distributed memory clusters. This refined aggregation equips each of the Summit’s 4,608 nodes with multiple IBM Power9 CPUs and NVIDIA Volta GPUs effectively powering every node with over half a terabyte of high bandwidth memory plus DDR4 memory addressable by all CPUs and GPUs. Connected by NVIDIA’s high-speed NVLink, these powerful nodes give way to future innovation today.
The performance capability of a supercomputer is measured in teraFLOPS. Floating-point operations per second, or FLOPS, are most useful for scientific problem solving that requires floating-point calculations. Theoretical peak performance rates calculated by multiplying the number of processors by clock speed are typically expressed in FLOPS. To add perspective, the Summit’s theoretical peak speed is 200,000 teraFLOPS.
Just for comparison; what would take a standard PC 30 years to compute, the Summit can complete in one minute.

What is high-performance computing used for?

Given the nature of these extremely high-powered, high-performance computers, the unprecedented capacity for problem-solving lends itself to benefit society in a big way. Supercomputers provide the tools needed for a number of modern innovations stretching from smart appliances to nuclear test simulations.
Not only do supercomputers enable accelerated scientific research and computation, but they can also augment or replace experiment execution that may be too dangerous or impossible to complete in real life settings.
HPCs are engineered to take on the mighty tasks that your standard computer could never fathom. Scientists have used HPCs to generate climate models that provide visual insight into the evolution of climate over centuries. Capable of collapsing time and analyzing patterns, supercomputers have been an essential part of predicting future global climates and evaluating data supporting modern climate change.
Scientists have also taken the skies by storm, launching supercomputers into space for exploration and data collection. HPCs have thousands of uses that ultimately work to improve the technological scope of our world, changing lives and saving lives with incredible clock speed.

What is the future of high-performance computing?

The rapid development of supercomputers is understood when looking at the progression of speed and capacity in the past five years.
Supercomputer Titan debuted in 2012 boasting what was then an impressive 1.4 teraFLOP node performance with 18,688 nodes. 2018’s Summit delivered five times the computational power of the Titan with only 4.608 nodes.
The future of high-performance computers focuses on efficiency, making more with less. The future of HPCs lies in biosciences, climate modeling, geographical data collection, and many other disciplines. Supercomputers will be used to edit feature-length films and stream live even across the globe.
Research labs will be strengthened by HPCs that assist scientists in their quest to find renewable energy and analyze future and past universe evolutions. HPCs can even be used in medical fields to develop cures for diseases and deliver faster and more accurate diagnoses.
The future of high-performance computers is a bright one, and it’s unfolding right before our eyes.
[1] Oak Ridge National Library; Summit
About the Author: Tulie Finley-Moise is a contributing writer for HP® Tech Takes. Tulie is a digital content creation specialist based in San Diego, California with a passion for the latest tech and digital media news.

Disclosure: Our site may get a share of revenue from the sale of the products featured on this page.

More about these products
Disclaimer

Prices, specifications, availability and terms of offers may change without notice. Price protection, price matching or price guarantees do not apply to Intra-day, Daily Deals or limited-time promotions. Quantity limits may apply to orders, including orders for discounted and promotional items. Despite our best efforts, a small number of items may contain pricing, typography, or photography errors. Correct prices and promotions are validated at the time your order is placed. These terms apply only to products sold by HP.com; reseller offers may vary. Items sold by HP.com are not for immediate resale. Orders that do not comply with HP.com terms, conditions, and limitations may be cancelled. Contract and volume customers not eligible.

HP’s MSRP is subject to discount. HP’s MSRP price is shown as either a stand-alone price or as a strike-through price with a discounted or promotional price also listed. Discounted or promotional pricing is indicated by the presence of an additional higher MSRP strike-through price

The following applies to HP systems with Intel 6th Gen and other future-generation processors on systems shipping with Windows 7, Windows 8, Windows 8.1 or Windows 10 Pro systems downgraded to Windows 7 Professional, Windows 8 Pro, or Windows 8.1: This version of Windows running with the processor or chipsets used in this system has limited support from Microsoft. For more information about Microsoft’s support, please see Microsoft’s Support Lifecycle FAQ at https://support.microsoft.com/lifecycle

Ultrabook, Celeron, Celeron Inside, Core Inside, Intel, Intel Logo, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Inside Logo, Intel vPro, Itanium, Itanium Inside, Pentium, Pentium Inside, vPro Inside, Xeon, Xeon Phi, Xeon Inside, and Intel Optane are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

In-home warranty is available only on select customizable HP desktop PCs. Need for in-home service is determined by HP support representative. Customer may be required to run system self-test programs or correct reported faults by following advice given over phone. On-site services provided only if issue can't be corrected remotely. Service not available holidays and weekends.

HP will transfer your name and address information, IP address, products ordered and associated costs and other personal information related to processing your application to Bill Me Later®. Bill Me Later will use that data under its privacy policy.

Microsoft Windows 10: Not all features are available in all editions or versions of Windows 10. Systems may require upgraded and/or separately purchased hardware, drivers, software or BIOS update to take full advantage of Windows 10 functionality. Windows 10 is automatically updated, which is always enabled. ISP fees may apply and additional requirements may apply over time for updates. See http://www.microsoft.com.

“Best All In One Printer” and “the easiest printer you’ve ever had to set up” from Wirecutter. ©2020 The Wirecutter, Inc.. All rights reserved. Used under license. https://www.nytimes.com/wirecutter/reviews/best-all-in-one-printer/

Get Marvel’s Avengers when you purchase HP gaming PCs with qualifying 9th gen or 10th gen Intel® Core™ i5, i7 and i9 processors. Redemption code will be sent out by email within 60 days of purchase. Limited quantities and while supply lasts. Offer valid thru 12/31/2020 only while supplies last. We reserve the right to replace titles in the offer for ones of equal or greater value. Certain titles may not be available to all consumers because of age restrictions. The Offer may be changed, cancelled, or suspended at any time, for any reason, without notice, at Intel’s reasonable discretion if its fairness or integrity affected whether due to human or technical error. The Offer sponsor is Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA 95054, USA. To participate you must create an Intel Digital Hub Account, purchase a qualifying product during the redemption period, enter a valid Master Key, and respond to a brief survey. Information you submit is collected, stored, processed, and used on servers in the USA. For more information on offer details, eligibility, restrictions, and our privacy policy, visit https://softwareoffer.intel.com/offer/20Q3-19/terms.

© 2020 MARVEL. © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Other names and brands may be claimed as the property of others.

The personal information you provide will be used according to the HP Privacy Statement (https://www8.hp.com/us/en/privacy/ww-privacy.html)